
BGD
4, 2027–2068, 2007

Specific P-uptake
rates of bacteria and

phytoplankton

S. Duhamel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Biogeosciences Discuss., 4, 2027–2068, 2007
www.biogeosciences-discuss.net/4/2027/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Biogeosciences
Discussions

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Growth and specific P-uptake rates of
bacterial and phytoplanktonic
communities in the Southeast Pacific
(BIOSOPE cruise)
S. Duhamel1,2, T. Moutin1, F. Van Wambeke2, B. Van Mooy3, P. Rimmelin1,
P. Raimbault1, and H. Claustre4
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Abstract

Predicting heterotrophic bacteria and phytoplankton growth rates (µ) is of great sci-
entific interest. Many methods have been developed in order to assess bacterial or
phytoplankton µ. One widely used method is to estimate µ from data obtained on
biomass or cell abundance and rates of biomass or cell production. According to5

Kirchman (2002), the most appropriate approach for estimating µ is simply to divide
the production rate by the biomass or cell abundance estimate. Most of the methods
using this approach are expressed using carbon (C) data. Nevertheless it is also pos-
sible to estimate µ using phosphate (P) data. We showed that particulate phosphate
(PartP) can be used to estimate biomass and that the phosphate uptake rate to PartP10

ratio can be employed to assess µ. Contrary to other methods using C, this estimator
does not need conversion factors and provides an evaluation of µ for both autotrophic
and heterotrophic organisms. We report values of P-based µ in three size fractions
(0.2–0.6; 0.6–2 and >2µm) along a Southeast Pacific transect, over a wide range of
P-replete trophic status. P-based µ values were higher in the 0.6–2µm fraction than15

in the >2µm fraction, suggesting that picoplankton-sized cells grew faster than the
larger cells, whatever the trophic regime encountered. Picoplankton-sized cells grew
significantly faster in the deep chlorophyll maximum layer than in the upper part of the
photic zone in the oligotrophic gyre area, suggesting that picoplankton might outcom-
pete >2µm cells in this particular high-nutrient, low-light environment. P-based µ at-20

tributed to free-living bacteria (0.2–0.6µm) and picoplankton (0.6–2µm) size-fractions
were relatively low (0.11±0.07 d−1 and 0.14±0.04 d−1, respectively) in the Southeast
Pacific gyre, suggesting that the microbial community turns over very slowly.

1 Introduction

A fundamental aim in ecology and hence, biological oceanography and limnology, is25

to understand and predict the abundance of organisms and their temporal change
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(Banse, 2002). An assessment of the ecological role of both autotrophic and het-
erotrophic marine micro-organisms depends, to a significant extent, on estimates of
their µ (Azam et al., 1983). Phytoplankton µ estimates vary widely from values of
around 0.1–0.3 d−1 (Letelier et al., 1996; Maranon et al., 2000, 2005) to 1–2 d−1 (Laws
et al., 1987; Quevedo and Anadon, 2001). Bacterial µ estimates also vary widely, from5

very low values 0.004–0.25 d−1 (Sherr et al., 2001; Van Wambeke, 2007b1) to higher
values of around 2–10 d−1 (Ducklow, 1983; Jones et al., 1996). Studies comparing
bacterial and phytoplankton µ are scarce and show significant differences between
these organisms (Jones et al., 1996). The determination of heterotrophic bacterial and
phytoplankton µ is critical in order to predict the responses of the planktonic ecosystem10

to potential changes in nutrient supply to the upper ocean.
Numerous methods have been developed to measure µ (Brock, 1971). In order to

estimate phytoplankton and heterotrophic bacterial µ, authors have used various direct
or indirect methodologies of varying accuracy. The two most common direct methods,
applicable to both heterotrophic bacteria and phytoplankton, are the frequency of di-15

viding cells (Hagstrom et al., 1979) and the dilution technique (Landry and Hassett,
1982; Quevedo and Anadon, 2001). Direct methods are difficult to set up on board so
microbial growth rates are commonly calculated from production and standing stock
data. According to Kirchman (2002), the most appropriate approach to estimate µ of
microbial assemblages is the simplest, that is, to divide the production rate by the es-20

timate of biomass (B) or cell abundance. This ratio is called the “specific uptake rate”
(Vsp) (Lipschultz, 1995; Dickson and Wheeler, 1995) or specific growth rate (Laws et
al., 1984; Marañon et al., 2003; Holl and Montoya, 2005) and it is an expression of the
µ, as it is modified by resource limitation, temperature and predation (Brock, 1971).
The most common indirect methods to measure phytoplankton µ are 14C-pigment la-25

belling (Redalje and Laws, 1981; Welschmeyer et al., 1991; Jones et al., 1996; Cailliau

1Van Wambeke, F., Obernosterer, I., Moutin, T., Duhamel, S., Ulloa, O., and Claustre, H.:
Heterotrophic prokaryotic production in the South East Pacific: longitudinal trends and coupling
with primary production, Biogeosciences Discuss., in preparation, 2007b.
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et al., 1996), cell cycle analysis (Vaulot, 1992; Liu et al., 1999) and the use of equa-
tions linking autotrophic production (AP) and autotrophic cell abundance or biomass
(AB) (Smith et al., 2000; Maranon, 2005). In such equations, AP is deduced from the
NaH14CO3 incorporation uptake rate measurements (Steemann-Nielsen, 1951). The
most common indirect method for studying heterotrophic bacterial µ, is the use of equa-5

tions that link heterotrophic bacterial production (HBP) and heterotrophic bacterial cell
abundance or biomass (HBB). In such equations, HBP is generally deduced from the
incorporation of 3H-thymidine (Fuhrman and Azam, 1980, 1982) and 3H-leucine (Kirch-
man et al., 1985) into DNA and proteins respectively. More recently, measurements of
the incorporation rates of 33PO4 into phospholipids (particularly phosphatidylglycerol:10

PG and phosphatidylethanolamine: PE) specific to bacterioplankton have been used
(Van Mooy et al., 2006).

In numerous studies, authors have estimated phytoplankton µ by dividing AP, mea-
sured using the 14C method, by various AB estimators such as Chlorophyll a (Chla),
particulate organic carbon (POC) and carbon (C) content estimated from microscopy15

or flow cytometry measurements (Eppley, 1972; Vadstein et al., 1988; Malone et al.,
1993; Maranon et al., 2000, 2005; Moreira-Turcq, 2001). The use of Chla and POC
as AB proxies is debatable (Le Floc’h et al., 2002; Sobczak et al., 2002; Huot et al.,
this issue) and C content estimates are dependant on conversion factors. These con-
version factors can vary greatly between studies. In the same way, the evaluation20

of bacterial µ based on the HBP to HBB ratio requires several conversion factors (to
convert the incorporation of 3H-leucine or 3H-thymidine to C equivalents and to con-
vert cell number to biomass equivalents) varying with different studies (Riemann et al.,
1990). Furthermore, method comparisons can show significant differences between µ
estimates (Laws et al., 1984).25

If µ = production/biomass, then there is a direct relationship between incorporation
rate per cell and µ (Kirchman, 2002). Although biomass and production estimators are
usually expressed in terms of C, it is also possible to express them in terms of nitro-
gen (N) or phosphate (P) as C, N and P are major cellular constituents linked via the
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“Redfield ratio” (Redfield, 1963; Berman, 1980; Laws et al., 1984). Contrary to C and
N, P is more quickly liberated from dead material (Menzel and Ryther, 1964; Knauer et
al., 1979; Minster and Boulahdid, 1987; Clark et al., 1999). As a consequence, in the
open ocean, the proportion of detrital P in PartP is low (Faul et al., 2005). Phosphate
uptake rates are commonly measured using the 32P or 33P method and quantifies the5

amount of P that is taken up by both heterotrophic and autotrophic cells. Measuring the
dissolved inorganic P (DIP) uptake rates provides an estimate for planktonic produc-
tion, assuming DIP is the sole source of P and there is no, or negligible luxury uptake
(Thingstad et al., 1996). Thus, particulate P (PartP) and P uptake rate can be used as
estimators of planktonic biomass and production, respectively.10

We estimated µ from production to biomass ratios expressed in terms of P and
discussed the bias associated with using C and P-based µ estimations. Combining
P uptake rates and PartP measurements with size fractionations, we determined the
DIP specific uptake rate (V sp

DIP) in three size fractions corresponding to heterotrophic
bacteria, picophytoplankton and nano-microphytoplankton (0.2–0.6; 0.6–2 and >2µm,15

respectively), following an east-west transect along the Southeast Pacific ocean. Yet,
this area present an interesting diversity of trophic conditions among which the South-
east Pacific gyre which is the largest, least described and most oligotrophic anticy-
clonic gyre of the ocean (Claustre and Maritorena, 2003; Claustre et al., 20072). The
measurement of V sp

DIP in the different compartments enabled us to compare bacterial to20

phytoplankton µ using the same method and to study the variability of dynamics among
2 major groups of phytoplankton.

2Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section: bio-optical
and biogeochemical conditions in the South East Pacific in late 2004 – the BIOSOPE cruise,
Biogeosciences Discuss., in preparation, 2007.
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2 Materials and methods

2.1 Station locations, sample collection and hydrological characteristics

This work was conducted during the BIOSOPE (BIogeochemistry and Optics SOuth
Pacific Experiment) cruise in the Southeast Pacific Ocean (between 146.36◦ W and
72.49◦ W; Fig. 1). The cruise was carried out aboard “l’Atalante” from October to5

December 2004. High vertical resolution environmental data was produced using a
conductivity temperature-depth-oxygen profiler (CTDO, Seabird 911 Plus), from 0 and
500 m, measuring external temperature, conductivity, salinity, oxygen, fluorescence
and depth (see Claustre et al., 20072; Ras et al., 20073, for hydrodynamical entities,
hydrographic conditions and pigment distribution). Seawater samples were collected10

at 6 predetermined depths corresponding to 6 levels of the Photosynthetically Active
Radiations (PAR – 50, 25, 15, 7, 3 and 1% of surface irradiance). Samples were col-
lected in 12 L Niskin bottles attached to a rosette CTD system, at 09:00 a.m. (local
time). Subsamples were collected directly, without pre-filtration, into clean, sample-
rinsed polycarbonate bottles.15

2.2 Analytical methods

Particulate phosphate (PartP) was measured using the Strickland and Parsons pro-
cedure (1972) for standard DIP, following high-temperature persulfate wet-oxidation at
120◦C and 1 bar (Pujo-Pay and Raimbault, 1994). Sequential filtration was carried out
on 1 to 1.2 L samples through different porosity polycarbonate filters (0.2, 0.6, and20

2µm; 47 mm) using Sartorius systems and very low vacuum (drop by drop). The 0.2
and 0.6µm filters in the lower Sartorius system were separated by a nylon separator
(NY8H04700, Millipore) previously treated by persulfate wet-oxidation to lower blank
values. Immediately after filtration, the filters (and the separator for the 0.2µm filter)

3Ras, J., Uitz, J., and Claustre, H.: Spatial variability of phytoplankton pigment distribution
in the South East Pacific, Biogeosciences Discuss., in preparation, 2007.
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were put into 20 mL Teflon bottles. 2.5 mL of reagent (140 ml of NaOH 1.5 M, 30 g of
H3BO3, 360 ml of demineralised water) was added and the mineralization processed
(autoclave 30 min, 1 bar). After cooling down to ambient temperature, DIP was mea-
sured in the same bottles as for mineralization. All reagents were prepared with pro
analysis MerckTM Reagent Grade chemicals and with Milli-QTM high purity deminer-5

alised water. All utensils were washed with 10% hydrochloric acid and rinsed three
times with demineralised water.

Particulate organic carbon concentration was determined by the wet-oxidation pro-
cedure (Raimbault et al., 1999), following the filtration of 1.2 L of seawater through
0.2µm teflon membranes.10

Chlorophyll a (Chl a) concentration was determined by the serial filtration of 1 to 1.2 L
samples following the same filtration method as for PartP. Immediately after filtration,
the filters were put in cryotubes with 5 mL of methanol for pigment extraction (30 min,
4◦C) (Herbland et al., 1985). The fluorescence was measured using a Turner designs
10-AU-005-CE fluorimeter equipped with a chlorophyll a Kit (F4T45.B2 lamp) according15

to Welschmeyer (1994).
Picophytoplankton (Prochlorococcus, Synechococcus and picophytoeukaryotes)

and bacterial abundances were determined according to Grob et al. (2007) using a
FACSCalibur (Becton Dickinson) flow cytometer. Picophytoplankton abundances were
determined in situ on fresh samples while bacterioplankton samples were fixed with ei-20

ther paraformaldehyde at 1% or glutaraldehyde at 0.1% final concentration and frozen
in liquid nitrogen. Samples were then processed according to Marie et al. (2000a,
b). At each sampling depth, corresponding to the Chla and P and C uptake rates
measurements, 2 mL samples were filtered through 0.6µm polycarbonate filters. The
filtrate was then analysed using flow cytometry and compared to the total in the corre-25

sponding sample.
Carbon and phosphate uptakes were determined using the 33P/14C dual labeling

method (Duhamel et al., 2006). Duplicate samples (300 ml) were collected into sample-
rinsed, polycarbonate bottles (Nalgene) for each sampling depth. An additional dupli-
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cate sample (300 ml) of surface water was incubated with 300µl of HgCl2 (20 g L−1)
to act as a control for non-biological assimilation (Kirkwood 1992). The samples
were inoculated with 1080 kBq carrier-free 33P (<40 pmol L−1 final concentration – or-
thophosphate in dilute hydrochloric acid; Amersham BF 1003; half-life 25.383±0.040
days; Duhamel et al., 2006), and 3.7 MBq 14C (bicarbonate aqueous solution; Amer-5

sham CFA3; half-life 5700±30 years; Duhamel et al., 2006). Samples were incu-
bated under simulated conditions for 4 to 5 h. Incubation boxes equipped with light
filters (nickel screens) were used to reproduce the light level at the appropriate sam-
ple depths (50, 25, 15, 7, 3, 1% of transmitted light). Following incubation, 600µL of
KH2PO4 (10 mmol L−1) was added to each flask in order to stop labelled DIP assim-10

ilation. Samples were kept in the dark to stop DIC uptake. Fractions of 50 mL were
filtered through 25 mm polycarbonate membranes (0.2, 0.6 and 2µm) which had been
placed on GF/F filters soaked with saturated KH2PO4, using a low-pressure suction
(<0.2 bars). When all samples were filtered, the pressure was increased to 0.6 bars for
5 s in order to eliminate un-incorporated 33P. Filters were placed into scintillation vials15

(Wheaton low-potassium 6 mL glass-clear vials with screw-cap foil liner) with 150µl
of HCl (0.5 mol L−1) in order to eliminate any un-incorporated 14C. After 12 h, 6 ml of
scintillation liquid (Ultimagold MV scintillation liquid, Packard) was added to each vial
before the first count. Counting (count per minute – cpm) was carried out on a Packard

Tri-Carb® 2100TR scintillation counter. In order to separate the activity due to 33P from20

that of 14C, we applied the method using the different half-lives of the two isotopes (For
more details, see Duhamel et al., 2006). A second count was made after a year, sam-
ples having been preserved in the dark at room temperature. C and P uptake rates
measurements in each size fraction (0.2–0.6; 0.6–2 and >2µm) were obtained using
difference calculations.25

Bacterial production was determined by [3H]-leucine incorporation using the centrifu-
gation method (Smith and Azam, 1992) according to Van Wambeke et al. (2007b)1. A
factor of 1.5 kg C mol leucine−1 was used to convert the incorporation of leucine to
carbon equivalents, assuming no isotopic dilution (Kirchman, 1993).
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2.3 Daily rates

The daily C uptake rates have been calculated using the method of Moutin et al. (1999).
The model enables a conversion factor to be calculated which permits net hourly DIC
uptake rates (nmol L−1 h−1) to be transformed into net daily rates (nmol L−1 d−1). The
model takes into account the geographical position (latitude and longitude), the sam-5

pling date, the time of dawn, incubation start time and the time the incubation ended
(GMT). The model of Moutin et al. (1999) that previously took theoretical solar radiation
into account has been modified to take into account the surface irradiance measured
on board.

Daily P uptake rates may be calculated simply by multiplying the hourly rate by 24.10

Indeed, in several studies (Perry and Eppley, 1981; Moutin et al., 2002), P uptake was
shown to be constant over 24h.

2.4 Specific uptake rate estimates

Specific uptake rates (V sp) have been calculated by dividing the estimators of produc-
tion (heterotrophic bacterial production – HBP, C uptake rates – VDIC or P uptake rates15

– VDIP) by estimators of biomass (Phytoplankton and/or bacteria cytometric counts
converted in AB and HBB, respectively, or particulate P – PartP). V sp

DIP corresponds
to the VDIP to PartP ratio, V sp

DIC
corresponds to the VDIC to AB ratio, HBP:HBB cor-

responds to the HBP to HBB ratio. A conversion factor of 10 fg C cell−1 (Christian
and Karl, 1994; Caron et al., 1995) has been used to convert heterotrophic bacterial20

abundance (counted by flow cytometry) to C equivalent. AB has been calculated us-
ing two methods. The first one uses a cell-number-to-biomass conversion factor. We
chose the Campbell et al. (1997) estimates for Prochlorococcus, Synechococcus and
Picoeukaryotes (Table 1). The second method uses a Chla-to-biomass conversion fac-
tor. For stations outside the gyre, we chose 70 g C g Chla−1, the average value found25

for subtropical Atlantic Ocean total phytoplankton (Veldhuis and Kraay, 2004). For sta-
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tions inside the gyre, we used values of Chla-to-biomass conversion factor varying with
PAR: 185, 120, 90, and 20 g C g Chla−1 for 50 and 25%, 15%, 7%, and 3 and 1% of
PAR, respectively. These factors were chose according to the results found by Veldhuis
and Kraay (2004) at the most oligotrophic station of their transect in the Atlantic tropical
gyre.5

The V sp
DIP have been calculated for four size fractions: 0.2–0.6; 0.6–2; >2 and

>0.6µm. We will develop arguments to show that they correspond to heterotrophic
bacteria (V sp

DIP<0.6), picophytoplankton (V sp
DIP0.6−2), nano-micophytoplankton (V sp

DIP>2) and

total phytoplankton (V sp
DIP>0.6), repectively. The V sp are expressed as daily rates (d−1)

so they are comparable with values found in the literature.10

3 Results

3.1 Cytometry data

We chose to separate bacteria from phytoplankton by filtrating through 0.6µm filters. In
this way, we determined bacteria V sp

DIP in the 0.2–0.6µm fraction. To verify the accuracy
of our results, we counted the percentage of bacterial cells that passed through a 0.6-15

µm-filter using flow cytometry. On comparing the total and <0.6µm sample counts, we
found that on average, 91±10% of the heterotrophic bacteria passed through the 0.6-
µm-filter whatever the trophic regime (n=90; all euphotic-layer depth included). This
value was in the same range as values obtained in other studies (∼80%; Obernos-
terer et al., 2003). Cytometry data showed that Prochlorococcus (when detectable),20

Synechococcus and Picoeucaryotes cells had an average size of 0.68±0.08µm;
0.86±0.1µm (1.16±0.02µm for the upwelling stations) and 1.74±0.13µm all over the
transect, respectively (Results from Grob et al., 2007). Nevertheless, cytometry counts
showed that 34±24% of the Prochlorococcus cells and 3±5% of the Synechococcus
cells were found in the <0.6µm fraction.25
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3.2 Evaluation of using particulate phosphate as an estimator of living biomass

Figure 2 shows a typical example of the vertical distribution of PartP and Chla con-
centrations compared to the vertical distribution of cell counts by flow cytometry. In
the upper 80 m, PartP concentrations were fairly constant, varying between 10.0 and
10.4 nmol L−1 from surface to the depth of 7% PAR. PartP concentrations decreased5

to 5.3 nmol L−1 at the depth of 1% PAR while Chla concentrations increased from 0.05
to 0.19µg L−1 from the surface waters down to 1% of PAR, respectively. So, contrary
to Chla, PartP did not show a deep concentration maximum (Fig. 2). Phytoplankton
cell counts by flow cytometry showed an increase from 1.1×105 to 2.8×105 cells mL−1

from surface water to the depth of 3% of PAR and a decrease to 1.3×105 cells mL−1
10

at the depth of 1% of PAR. In the same way, total cytometric counts (bacteria + phy-
toplankton) showed an increase from 6.8×105 to 8.5×105 cells mL−1 from the surface
water to the depth of 15% of PAR and a decrease to 6.5×105 cells mL−1 at the depth of
1% of PAR. Variations in PartP concentration throughout the euphotic zone are closer
to that of cell concentration than to Chla concentration.15

Chla is largely used to estimate phytoplankton biomass (Trembaly and Legendre,
1994; Uitz et al., 2006). Nevertheless, as illustrated by Fig. 2, the C:Chla ratio is
subjected to variations depending on light (Taylor et al., 1997). For this reason, only
data between 50 and 15% of transmitted light are considered for the comparison of
biomass estimates to Chla concentration, to avoid any biases associated with pho-20

toacclimatation. In order to check whether PartP below 0.6µm is representative of
bacteria and PartP above 0.6µm is representative of phytoplankton biomass, data in
terms of PartP and Chla were compared in the two fractions (Fig. 3). The relation
between Chla and PartP in the 0.2–0.6µm fraction was less significant than in the
>0.6µm fraction (r2=0.31, P<0.001; and r2=0.86, P<0.001, respectively; Fig. 3). This25

indicates that 69% and 14% of the dispersion can not be explained by the regression
in the fractions between 0.2–0.6µm and above 0.6µm, respectively. The contribution
of Prochlorococcus to PartP in the 0.2–0.6µm fraction drives the correlation to Chla,
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but this correlation is comparatively weak and suggests the contributor to PartP are
organisms that do not contain Chla. In other words, it is mainly free-living bacteria that
contribute to PartP in the 0.2–0.6µm fraction. In the same way, the essential part of
the PartP in the >0.6µm fractions was correlated to Chla, supporting the hypothesis
that it corresponds essentially to phytoplankton biomass.5

The regression slope between POC and PartP concentration was 349 (Fig. 4a) while
between VDIC and VDIP was 57 (Fig. 4b). This indicates that the turnover rates of POC
and PartP were different, and supports the hypothesis that P is more rapidly mineral-
ized from dead material than C. The correlation between Chla and PartP concentration
data was also better (r=0.87, p<0.001, Fig. 4c) than that between Chla and POC10

(r=0.51, p<0.05, Fig. 4d), supporting the idea that PartP was a better indicator of
living biomass than POC. Eutrophic stations have been omitted to avoid regressions
being drawn by high values.

3.3 Evaluation of the use of V sp
DIP as an estimator of bacteria and phytoplankton growth

rates15

We compared euphotic-layer averaged values of Vsp obtained from different methods
(Fig. 5). For bacteria, we compared the values of V sp

DIP<0.6 and of HBP:HBB (Fig. 5a).

V sp
DIP<0.6 values were 1.2 to 9.5 times higher than HBP:HBB values in rich areas (MAR

to STB6 and STB15 to UPX) while in the centre of the gyre (STB7 to STB14), V sp
DIP<0.6

values were 1.2 to 2.2 times lower than HBP:HBB values. Between MAR and STB2120

stations, HBP:HBB values were quite low and constant (0.11±0.04) while V sp
DIP<0.6 val-

ues varied widely from 0.04 to 1.11 d−1 depending the trophic regime encountered.
As a consequence, the correlation between HBP:HBB ratio and V sp

DIP<0.6 values, even

excluding the “original” upwelling sites, was not significant (r2=0.08, p>0.05). For
phytoplankton, we compared the values of V sp

DIC>0.6 and of V sp
DIP>0.6. V sp

DIC>0.6 can be25

obtained using a Chla-to-biomass or cell-number-to-biomass conversion factor. Using
cell-number-to-biomass conversion factors according to Campbell et al. (1994, 1997)
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we found V sp
DIC

values on average 2 and 12 times higher than using a Chla-to-biomass
conversion factors. Highest differences were found in meso- and eutrophic areas. With
this Chla-to-biomass conversion factor, V sp

DIC>0.6 values were 1 to 4 and 0.6 to 1.8 times

higher than V sp
DIP>0.6 in the gyre and in the meso- and eutrophic areas, respectively

(Fig. 5b). The major bias linked with the determination of V sp
DIC

is the choice of the5

conversion factor. Indeed, considering extreme values of the C:Chla ratio found in liter-
ature for surface layer of the equatorial Pacific ocean (40 and 200 g C Chla−1, Chavez
et al., 1996), values of V sp

DIC
can vary up to a factor 5. In the same way, we calculated

V sp
DIC

using different cell-number-to-biomass conversion factor. Using conversion factors
provided by Campbell et al. (1997) or by Bertilsson et al. (2003) for Prochlorococcus,10

Synechococcus and picoeucaryotes (see Table 1), we found that V sp
DIC

values were on
average 20% higher with Campbell’s value.

3.4 Estimates of bacteria and phytoplankton V sp
DIP in the Southeast Pacific gyre

The different size fractions showed significant vertical and longitudinal variations of
V sp

DIP along the transect (P<0.001; Fig. 6). Highest values were found in rich areas15

while lower values were found in the upper part of the photic zone in the gyre area.
In rich areas, the 0.2–0.6µm fraction, assumed to be composed mostly of free-living
heterotrophic bacteria, showed the highest euphotic zone averaged values of V sp

DIP

(0.6±0.3 to 3±1 d−1) while in the gyre area, the 0.6–2µm fraction, assumed to consist
of picophytoplankton cells, showed the highest euphotic zone averaged values of V sp

DIP20

(0.10±0.04 to 0.20±0.11 d−1). Whatever the station, the >2µm fraction had the lowest
V sp

DIP euphotic zone averaged values (0.02±0.07–0.6±0.2 d−1). The variation of V sp
DIP

with depth in the 0.6–2µm fraction was quite different from that of the >2µm fraction,
particularly in the west part of the gyre area. In the gyre area, while the >2µm frac-
tion showed quiet constant V sp

DIP values with depth (no significant difference was found25

between V sp
DIP values in the deep chlorophyll maximum layer (DCML) and the upper
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layer of the euphotic zone, P=0.161), the 0.6–2µm fraction showed significantly higher
values of V sp

DIP in the DCML (P<0.001). The smaller size fraction (0.2–0.6µm) showed

quite low values throughout the euphotic zone in the oligotrophic area (0.11±0.07 d−1)
and no significant tendency with depth was observed (P<0.001).

4 Discussion5

Quantifying heterotrophic bacteria and phytoplankton µ in the ocean is of critical impor-
tance to understand many oceanographic processes since µ of individual populations
control the ultimate composition of the assemblage (Banse, 1991). This, in turn, con-
trols a large number of ecosystem properties, such as export of organic matter, nutri-
ents utilization and production patterns. Knowledge of µ is critical to our understanding10

of the biotic responses to environmental forcing. The physiological responses are an
integral component in mechanistic models to predict ecosystem trophodynamics. Nev-
ertheless, studies of heterotrophic bacteria and phytoplankton assemblages are still
scarce, especially in the Southeast Pacific. We measured DIP uptake rates and PartP
concentrations in three size fractions: 0.2–0.6, 0.6–2 and >2µm in order to assess15

both heterotrophic bacteria and two size fractions of phytoplankton µ. First, we discuss
the production and biomass estimators; second, we discuss the P-based µ estimates
obtained in the Southeast Pacific.

4.1 Biomass estimators

The distribution of phytoplankton is commonly described in terms of Chla (Huot et al.,20

2007). Because the Chla content varies between species and with light and nutrients
(Philips et al., 1995; Sciandra et al., 1997; Finkel et al., 2004; Pérez et al., 2006; Moore
et al., 2006), it is not an ideal biomass estimator (Breton et al., 2000; Le Floc’h et al.,
2002). POC cannot be used directly because it contains a high proportion of detrital
matter (Sobczak et al., 2002; Figs. 4a and d). The AB in terms of C is never directly25
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determined but derived from other variables: Chla, biovolumes or cell numbers which
are then transformed using appropriate conversion factors. This entails a critical step
in the estimation of AB: the choice of conversion factor. C:Chla values vary over a wide
range (Table 2). For phytoplankton, cell-number-to-C conversion factor can vary signif-
icantly (Table 2) even at a species level (Prochlorococcus CCMP 1378: considering C5

is independent of light = 49±9 fg C cell−1 and considering C content varies with light
= 65±67 and 48±10 fg C cell−1, for cultures switched from low light to high light and
from high light to low light, respectively – Cailliau et al., 1996; Prochlorococcus PCC
9511 grown in turbidostat under a daily light cycle = 27±6 fg C cell−1 – Clautre et al.,
2002; Synechococcus WH8102 grown under continuous white light in batch cultures =10

279.1±84.2 fg C cell−1 – Six et al., 2004). We found significant differences (P<0.001)
in V sp

DIC
estimates according to the choice of phytoplankton cell-number-to-C or C:Chla

conversion factors. So, although the employ of conversion factors is still largely used,
it is difficult to choose the appropriate one. Because they vary with in situ conditions
and species composition, it should be necessary to use different factors for all sam-15

ples. This would result in a complex data analysis. Studies on heterotrophic bacterial
communities have shown that the C cell content changes in relation to natural condi-
tions and the physiological state of the bacterial assemblages (Table 2). Gundersen
et al. (2002) showed that the outcome of HBB assessments is highly dependant on
the choice of cell-specific conversion factors. In the same way, La Ferla and Leonardi20

(2005) demonstrated that the quantification of HBB based solely on abundance must
be considered with caution because of the variability in cell volumes and morphotypes.
Therefore, there is great uncertainty surrounding the estimate of C-based phytoplank-
ton and heterotrophic bacterial µ, whatever the choice of biomass estimator.

P is an essential element required for life, used by all organisms. It is found in a wide25

range of molecules with varying cellular roles, going from storage of genetic informa-
tion (nucleic acids: DNA, RNA) and energy (ATP, ADP, AMP) to structural composition
(phospholipids). If participation of detrital P is low in the PartP stock, then it would
represent cellular P content. Our results showed that PartP contained less detrital ma-
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terial than the POC (Fig. 4). This was indicated by significantly higher turnover rates
of PartP compared to those of POC and a significant correlation between PartP and
Chla concentrations. Similar observations have shown that P is preferentially released
into the water column relative to other elements such as C and N (Menzel and Ryther,
1964; Knauer et al., 1979; Minster and Boulahdid, 1987; Loh and Bauer, 2000; Paytan5

et al., 2003). The use of PartP as a living biomass indicator is particularly well adapted
to the open ocean. Indeed, in such areas, low values of detrital P are commonly found
(∼1% in equatorial Pacific Ocean, Faul et al., 2005). Nevertheless, even if the frac-
tion of detrital P is negligible in the whole fraction, the size distribution of detrital P is
not known and can affect the measurement of V sp

DIP in each size fraction. It has been10

shown that the more the size of the organic matter decreases, the more refractory it is
(the size-reactivity continuum hypothesis; Amon and Benner, 1996; Mannino and Har-
vey, 2000), therefore we can hypothesis that there is also a size-reactivity continuum in
detrital matter that engender higher concentration of detrital matter in the smallest frac-
tion. In this way, V sp

DIP<0.6may be underestimated. The proportion of detrital P in PartP is15

high in coastal areas (Faul et al., 2005). Consequently, V sp
DIP is more likely to be under-

estimated in the upwelling area. The other main advantage of using P instead of Chla
is that PartP takes both bacteria and phytoplankton into account. So if it is possible to
separate bacterial P from phytoplankton P in PartP, then it would be possible to esti-
mate bacterial and phytoplankton V sp

DIP in the same sample. Size fractionation was an20

adequate method for separating heterotrophic bacteria from phytoplankton since more
than 90% of bacterial cells passed through the 0.6µm-filters. However, an increasing
fraction of Prochlorococcus cells passed through this filter when water became ultra-
oligotrophic (in the centre of the gyre). Consequently, values of heterotrophic bacteria
V sp

DIP in the gyre may be biased due to the influence of Prochlorococcus cells. Never-25

theless, it was shown that DIC uptake in the 0.2–0.6µm fraction was negligible (data
not shown) and therefore the phytoplankton production in this fraction was negligible.
Thus, production in terms of P in the 0.2–0.6µm fraction can be mainly attributed to
free-living heterotrophic bacteria. Therefore, V sp

DIP<0.6 gives a good representation of the
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bacterial µ. In >0.6µm size fractions, the nano and microzooplankton can account for
a fraction of the PartP concentration values. Gasol et al. (1997) showed that zooplank-
ton C-biomass (protozooplankton + mesozooplankton) could account for 13–21% and
15–65% of the total C-biomass in coastal and open ocean areas, respectively. Conse-
quently, this could be a non negligible source of phytoplankton V sp

DIP underestimation,5

particularly for the >2µm size fraction.

4.2 DIP uptake rate measurements

Assuming the DIP to represent biologically available orthophosphate, we measured P
uptake rates (VDIP) in three size fractions. Daily P uptake rates were calculated by mul-
tiplying the hourly rate by 24. P uptake is generally shown to be constant over 24 h10

(Perry and Eppley, 1981; Harrison, 1983; Moutin et al., 2002) but diurnal variations in
P uptake have been observed in some studies (Eppley et al., 1971; Harrison et al.,
1977; Currie and Kalff, 1984). For the majority of stations, time course experiments
for 33P uptake were linear over 24 h, however there were some variations in P up-
take rates at some stations along the BIOSOPE transect (Duhamel et al., 2006). The15

methodological problems associated with 24-h incubation experiments can be signifi-
cant (Nalewajko and Garside, 1983; Harrison and Harris, 1986), especially in terms of
losses. However, short incubation experiments are supposed to reduce the bias linked
to such losses (see discussion in Duhamel et al., 2006). Nevertheless, it is important
to stress that even if the <0.6µm fraction is composed of solely heterotrophic bacteria,20

our data set does not prove that P is turning over at the same rate as the cells. Indeed,
Nalewajko and Lean (1978) measured net phosphate uptake and influx rates in batch
cultures of three algal cells. They showed that short-term P fluxes always exceeded
the net increase in P biomass, indicating that the cells release P compounds back into
the medium. To the best of our knowledge, the study of Nalewajko and Lean (1978)25

has not been repeated, so it would be necessary to repeat this experiment in a variety
of field samples in order to verify that this phenomenon is not exclusively observed in
cultures. C-based µ estimations are also submitted to such error type. Indeed, the re-
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lease of assimilation products is common to C measurements. Claustre et al. (2007)2

propose that the release of DOC in the Southeast Pacific should be a major process
which could explain the high community (bacteria + phytoplankton) production rates.
So, the release of DOC by phytoplankton cells produces bias in the evaluation of C
production (Wood et al., 1992) and subsequently for C-based µ estimations.5

4.3 Growth rates estimates

In 1981, Perry and Eppley used the 33P uptake rate to PartP ratio to estimate the
growth rate of phytoplankton making the statement that DIP assimilation was mediated
by phytoplankton (their data indicating low heterotrophic activity). In 1996, Thingstad et
al. used the 32P uptake rate to PartP ratio to evaluate both heterotrophic bacteria and10

phytoplankton growth rates using 1µm size fractionations. From these different studies,
where the proportion of detrital matter in the PartP was negligible, it was possible to put
forward the hypothesis that DIP was the sole source of P and so V sp

DIP estimates could
be used to assess bacteria and/or phytoplankton µ. Thus the idea of using P-based
estimates of µ is not new. In this study we provide information on the variations in15

P-based µ values in a gradient of oligotrophy where the waters where P-repleted (DIP
concentration and turnover time minimum values: 120 nmol L−1 and 7 d−1, respectively;
Moutin et al., 20074). Most estimates for C-based heterotrophic bacterial growth rates
in the open ocean fall into a wide range from zero to 10 d−1, whilst phytoplankton
appears to grow at rates of no more than 2 d−1 (Tables 1 and 3). We report a wide20

range in µ estimates ranging from 0 to 7 d−1 for heterotrophic bacteria and from 0 to
2 d−1 for phytoplankton. This range of values reflects the wide range of trophic status
encountered during the BIOSOPE cruise.

Estimates of the production to the biomass ratio, based on the leucine incorpora-

4Moutin, T., Karl, D., Duhamel, S., Rimmelin, P., Raimbault, P., Van Mooy, B., and Claustre,
H.: Phosphate availability and the ultimate control of nitrate input by nitrogen fixation in the
Pacific Ocean, Biogeosciences Discuss., in preparation, 2007.
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tion technique and C conversion of bacterial abundance (HBP:HBB) were significantly
lower than those estimated by V sp

DIP<0.6 in rich areas (MAR to STB6 and STB15 to
UPX). Applying various methods (measurements of the natural abundance of nucleoid-
containing cells by combined epifluorescence and phase-contrast microscopy; Detec-
tion of the reduction of the fluorogenic dye, 5-cyano-2,3-ditolyl tetrazolium chloride;5

Nucleic acid double staining (SYBR Green + propidium iodide); determination of mem-
brane integrity by confocal laser-scanning microscopy), it has been shown that at any
given time, a significant fraction of the bacterioplankton community has minimal or no
metabolic activity (Zweifel and Hagström, 1995; Sherr et al., 1999; Gregori et al., 2001;
Pirker et al., 2005). For this reason, µ estimates based on the HBP:HBB ratio could be10

underestimated. Our V sp
DIP<0.6 values were significantly higher in the rich areas (MAR

to STB6 and STB15 to UPX, P<0.001) than in the gyre area. In the same way, Mor-
gan et al. (2006) found that bacterial growth rates (with µ=HBP/bacterial abundance,
HBP deduced from 3H-Thymidine method using conversion factor of 2×1018 cells ×
[mol TdR]−1) were significantly greater on the shelf (0.8–1.8 d−1) compared to the gyre15

(0.1–0.3 d−1) in the western Black Sea.
Studies comparing bacterial and phytoplankton µ are scarce (Jones et al., 1996;

Almeida et al., 2002). Measurements of V sp
DIP in the 0.2–0.6, 0.6–2 and >2µm frac-

tions have enabled us to make such comparisons. In oligotrophic environments, het-
erotrophic bacterial µ can be higher or lower than that of phytoplankton. For exam-20

ple, Pérez et al. (2006) showed that in the upper water (mixed layer) of the subtrop-
ical Atlantic gyres, phytoplankton growth rates were 0.17 d−1 (from daily AP and pi-
coplankton abundance transformed to B with the empirical conversion factors obtained
by Zubkov et al. (2000), see Table 1). While in the same area, Zubkov et al. (2000)
found that heterotrophic bacterial growth rates were 0.12 d−1 (using a conversion factor25

of 11.5 fg C per heterotrophic bacteria). In the upper 40 m of the North Pacific subtrop-
ical gyre, Jones et al. (1996) found 0.7 d−1 and ∼1 d−1 for phytoplankton (estimated
from the Chla-labelling technique) and heterotrophic bacteria (estimated from the in-
corporation of 3H-adenine into DNA), respectively. We showed that picophytoplank-

2045

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2027/2007/bgd-4-2027-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2027/2007/bgd-4-2027-2007-discussion.html
http://www.egu.eu


BGD
4, 2027–2068, 2007

Specific P-uptake
rates of bacteria and

phytoplankton

S. Duhamel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

ton µ (0.14±0.04 d−1) were higher that heterotrophic bacteria µ (0.11±0.07 d−1) in the
Southeast Pacific gyre and found values in the range than those found in the Atlantic
and North pacific gyres by Pérez et al. (2006) and Zubkov et al. (2000), suggesting the
existence of a microbial community that turns over very slowly. These relatively low
values of µ for both phytoplankton and heterotrophic bacteria in the oligotrophic gyre5

area must be the result of the limitation of both bacterial and primary production by
nitrogen (Bonnet et al., 20075; Van Wambeke et al., 2007a6). Slow phytoplankton µ in
the subtropical Atlantic have been explained in terms of the observed assimilation num-
bers and C:Chl-a ratios in a review by Marañon (2005). The light-saturated, chlorophyll
normalised photosynthesis rate necessary to support phytoplankton µ of 1 d−1 would10

be well above those reported in the subtropical Atlantic (156±16 and 205±17 mg C
m−2 d−1, in the North and South Atlantic subtropical gyres, respectively; Pérez et
al., 2006) which were in the range of those measured in the Southeast Pacific gyre
(134±82 mg C m−2 d−1; Van Wambeke et al., 2007b1). In coastal areas heterotrophic
bacterial µ are often found to be lower than that of phytoplankton (Laws et al., 1984;15

Revilla et al., 2000). In the Southeast Pacific, we found that organisms in the <0.6µm
fraction had higher V sp

DIP values than organisms in the >0.6 fraction in the rich areas
(MAR to STB6 and STB15 to UPX), while in the hyperoligotrophic gyre, organisms in
the 0.6–2µm fraction yielded the highest V sp

DIP values. Thus it may be deduced that
the picophytoplankton was more efficient than nano-microphytoplankton and free living20

heterotrophic bacteria for growing in such hyperoligotrophic conditions.
There are relatively few studies comparing µ for different size fractions of natural phy-

5Bonnet, S., Guieu, C., Bruyant, F., Prasil, O., Raimbault, P., Gorbunov, M., Zehr, J. P.,
Grob, C., Masquelier, S., Garczareck, L., Moutin, T., Van Wambeke, F., and Claustre, H.: Nu-
trients controlling primary productivity in the South East Pacific, Biogeosciences Discuss., in
preparation, 2007.

6Van Wambeke, F., Bonnet, S., Moutin, T., Raimbault, P., Alarçon, G., and Guieu, C.: Factors
limiting heterotrophic prokaryotic production in the Southern Pacific Ocean, Biogeosciences
Discuss., in preparation, 2007a.
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toplanktonic communities (Pérez et al., 2006). In coastal eutrophic ecosystems, large
phytoplankton have been reported to have faster growth rates than the small-sized
phytoplankton (Cermeno et al., 2005 – C-specific photosynthetic rates). Neverthe-
less, in the Chilean upwelling area, there was no significant difference between V sp

DIP for

the two size-fractions of phytoplankton (0.5±0.3 and 0.4±0.2 d−1 for picophytoplankton5

and nano-microphytoplankton respectively, p>0.05). We found that picophytoplankton
(0.6–2µm) was growing 1 to 15 times faster than the nano-microphytoplankton (>2µm)
between the Marquesas Islands and Chile, with maximal differences in the gyre area.
Differences in growth rates have been reported to be related to the specific compo-
sition of the planktonic community (Furnas, 1990). So the differences we observed10

could be related to differences between the taxonomic groups encountered along the
BIOSOPE transect. Indeed, flow cytometry data showed high variations in the relative
composition of picophytoplankton populations along the BIOSOPE transect (Grob et
al., 2007). In the hyperoligotrophic region, the DCM corresponded to Prochlorococcus
and picophytoeukaryotes maxima (Grob et al., 2007) as well as the maximum growth15

rates values of the picophytoplankton size fraction (Fig. 6).
In most of the oligotrophic area, phytoplankton µ were found to be higher in the upper

mixed layer than within the proximity of the DCML (Malone et al., 1993 – with AP de-
duced from the 14C labelling method and AB deduced using a C:Chla ratio or 14C-Chla
experiments ; Quevedo and Anadon, 2001 – dilution method). We found that picophyto-20

plankton grew significantly faster at the DCML than in the upper part of the photic zone
in the hyperoligotrophic gyre area (from STB7 to STB14; P< 0.001). Pérez et al. (2006)
found the same trends in the subtropical Atlantic gyres with µ in the <2µm fraction of
0.17±0.01 d−1 in the mixed layer and 0.25±0.02 d−1 in the DCML. Neverthelees, they
found that large size fraction (>2µm) was growing faster in the mixed layer than in the25

DCML while we found no statistical difference for V sp
DIP>2 (P=0.161). Our results support

the hypothesis of Pérez et al. (2006) that picoplankton might outcompete large cells in
high-nutrient, low-light environment of the DCML.

The evaluation of µ is still a subject of debate (Marañon, 2005). It is not possible
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to judge which technique is the best for measuring µ, if indeed any one technique is
capable of doing such as each method measures a different aspect of growth. P-based
µ estimates are one of the many ways to assess µ and comparing the results obtained
using the different existing methods can help to understand how fast the cells grow in
relation to the area of ocean under study (Christian et al., 1982; Laws et al., 1984;5

Jespersen et al., 1992).

5 Conclusions

Growth rate is a fundamental property of all organisms and is especially informative
about the activity of microbial populations. The relative activity of bacteria and phyto-
plankton in oligotrophic oceans has significant implications for the food-web structure,10

nutrient cycling pathways and for sinking flux of organic matter. Contrary to C-based
approaches, the P-based approach allows to assess bacterial and phytoplankton µ
on the same sample, to the extend that size fraction can isolate efficiently both het-
erotrophic and phytoplanktonic fractions. We have characterized the vertical and lon-
gitudinal variability of P-based µ in three size fractions of plankton. Picophytoplankton15

(0.6–2µm) grew faster than the large phytoplankton (>2µm) all over the Southeast
Pacific transect and particularly in the centre of the gyre. Thus, cells smaller than 2µm
were better adapted for growing in a wide range of trophic conditions than those greater
than 2µm. Heterotrophic bacteria (0.2–0.6µm) showed higher variations in P-based
µ with maximum rates in rich areas. Picophytoplankton grew faster than heterotrophic20

bacteria in the Southeast Pacific gyre with values in the range than those found in
the Atlantic and North pacific gyres by Pérez et al. (2006) and Zubkov et al. (2000),
suggesting the existence of a microbial community that turns over very slowly.
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Table 1. Review of values of biovolume-to-biomass and cell-number-to-biomass conversion
factors.

Biovolume-to-biomass conversion factor

Biovolume:B
(g of C cm−3)

Organisms – location Reference

0.121 Bacteria seawater or cultures Watson et al. (1977)
0.38±0.05 Heterotrophic bacteria – pebble beach (Long Island) or culture Lee and Fuhrman (1987)

Cell-number-to-biomass conversion factor

Cell:B
(fg of C cell−1)

Organisms – location Reference

20±0.8 Heterotrophic bacteria – pebble beach (Long Island) or culture Lee and Fuhrman (1987)
5.9 to 47.9 Heterotrophic bacteria – coastal environments Fukuda et al. (1998)
13 Heterotrophic bacteria – subtropical Pacific Ocean Fukuda et al. (1998)
12.4 Heterotrophic bacteria – Oceanic environments Fukuda et al. (1999)
10 Heterotrophic bacteria – subtropical Pacific Ocean Christian and Karl (1994)
15 Heterotrophic bacteria – Sargasso Sea Caron et al. (1995)
5.83 Heterotrophic bacteria – Northern Adriatic Sea (warm period) La Ferla and Leonardi (2005)
42.17 Heterotrophic bacteria – Northern Adriatic Sea (cold period) La Ferla and Leonardi (2005)
20 Heterotrophic bacteria – Station ALOHA Campbell et al. (1997)
53 Prochlorococcus – Station ALOHA Campbell et al. (1997)
46 Prochlorococcus – cultures Prochlorococcus MED4 Bertilsson et al. (2003)
29 Prochlorococcus – Atlantic transect from 50◦ N to 50◦ S Zubkov et al. (1998)
279.1±84.2 Synechococcus – cultures Synechococcus WH8102 Six et al. (2004)
250 Synechococcus – Station ALOHA Campbell et al. (1997)
92 Synechococcus – cultures Synechococcus WH8012 Bertilsson et al. (2003)
100 Synechococcus – Atlantic transect from 50◦ N to 50◦ S Zubkov et al. (1998)
2108 Picoeukaryote – Station ALOHA Campbell et al. (1997)
1500 Picoeukaryote – Atlantic transect from 50◦ N to 50◦ S Zubkov et al. (1998)
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Table 2. Review of values of growth rate (d−1) and of C:Chla ratio (gC gChla−1). The first part
of the table illustrates examples of C-based growth rates values and corresponding measured
C:Chla conversion factors values. The second part illustrates examples of values of C:Chla
ratio chose by the authors for growth calculations.

Growth rate C:Chla Organisms – location Reference

d−1 gC gChla−1

Values calculated in the study

0.5 80 Cyanobacteria, Cryptophytes, flagellates Claustre et al. (1994)*
0.2 200 Dinoflagellates Claustre et al. (1994)*
0.7 30 Diatoms Claustre et al. (1994)*
0.64–0.74 57–81 Natural phytoplankton populations – equatorial Pacific surface waters Chavez et al. (1991)
0.55–0.7 40–120 Natural phytoplankton (surface values) – equatorial Pacific surface waters Chavez et al. (1996)
0.03–0.53 14–50 Natural phytoplankton populations – Alboran Sea Arin et al. (2002)
0.01–0.25 47–51 Phytoplankton in small-temperate-zone lakes Cloern et al. (1992)

172±51 Natural phytoplankton populations – Tropical regions – North Atlantic Buck et al. (1996)
180±39 Natural phytoplankton populations – Subtropical regions – North Atlantic Buck et al. (1996)
82±42 Natural phytoplankton populations – Subarctic regions – North Atlantic Buck et al. (1996)
63.9–75.3 Whole water column phytoplankton – Subtropical Atlantic Ocean Veldhuis and Kraay (2004)
93–122 Whole water column Prochlorococcus – Subtropical Atlantic Ocean Veldhuis and Kraay (2004)
200–450 Prochlorococcus (surface values) – Subtropical Atlantic Ocean Veldhuis and Kraay (2004)
20–>160 Modelling study Taylor et al. (1997)
40–200 Natural phytoplankton (surface values) – central and eastern tropical Pacific Chavez et al. (1996)
77±6 and 17±2 Upper layer and deep chlorophyll maximum <2µm phytoplankton – Atlantic subtropical gyres Perez (2006)
186±21 and 58±10 Upper layer and deep chlorophyll maximum >2µm phytoplankton – Atlantic subtropical gyres Perez (2007)

Values selected by authors for growth calculations

30 Pico- and nanoplankton in a lagoon reef – Mayotte island Houlbrèque et al. (2006)
30 Pico- and nanoplankton in a coral reef – Coast of Eilat Fabricius et al. (1998)
30 Phytoplankton – Antarctica Krell et al. (2005)
50 Microphytoplankton – Model Lequéré et al. (2005)
50 Phytoplankton – North Water Polynya Sanders et al. (2003)
50 Phytoplankton – coastal area of canary Islands Aristegui et al. (2001)
35 Phytoplankton 150◦ W – Model Macedo and Duarte (2006)
90 Phytoplankton – Model – equatorial Pacific upwelling Rodier et al. (2000)
55 Review Gasol et al. (1997)

* and cited references.
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Table 3. Review of values of surface water phytoplankton and bacteria growth rate (d−1).

Growth rate (d−1) Technique Organisms – location Reference

0.76 (0.57–1.07) Dilution tehcnique Phytoplankton – North-east Atlantic Quevedo and Anadon (2001)
0.26 (0.19–0.36) 14C method Phytoplankton – eastern North Atlantic subtropical gyre Maranon (2005)
0.51 (0.42–0.62) 14C method Phytoplankton – western North Atlantic subtropical gyre Maranon (2005)
0.17 (0.13–0.22) 14C method Phytoplankton – South Atlantic subtropical gyre Maranon (2005)
0.21±0.02 14C method Microphytoplankton – oligotrophic area – Atlantic ocean Maranon et al. (2000)
0.1–>1.5 Review Phytoplankton – poor water of the open ocean Eppley (1981)
0.0–2.9 Review Phytoplankton assemblages Furnas (1990)
0.3–0.53 14C method Phytoplankton – Station ALOHA – 22◦45′ N; 158◦00′ W Letelier et al. (1996)
1 Pigment labeling with 14C Phytoplankton – North Pacific subtropical gyre Laws et al. (1987)
0.3–0.6 Pigment labeling with 14C Cyanobacteria – Sargasso Sea off Bermuda Goericke (1998)
0.06–0.99 Specific DIP uptake rate Picophytoplankton – Southeast Pacific 146.36◦ W, 72.49◦ W This study
0.02–0.83 Specific DIP uptake rate Nano-microphytoplankton – Southeast Pacific 146.36◦ W, 72.49◦ W This study
1.44 Seawater culture Bacteria – North western Atlantic Ocean Ducklow and Hill (1985)
0–0.45 Dilution tehcnique Bacteria – Gulf of Mexico Jochem et al. (2004)
2–10 Review Bacteria Ducklow (1983)
4.7 3H-adenine method Bacteria – North pacific subtropical gyre Jones et al. (1996)
0.2–1.5 3H-Thymidine method Bacteria – western Black Sea Morgan et al. (2006)
0.03–1.1 3H-Thymidine method Bacteria – Danube – Black Sea Becquevort et al. (2002)
0.004–0.25 3H-Leucine method Bacteria – review Van Wambeke et al. (2007b)1

0.31±0.09 3H-Leucine method Bacteria – Northeast Pacific Ocean 44◦38.3′ N, 124◦18.5′ W Sherr et al. (2001)
0.03±0.01 3H-Leucine method Bacteria – Northeast Pacific Ocean 44◦38.3′ N, 124◦48.0′ W Sherr et al. (2001)
0.02±0.01 3H-Leucine method Bacteria - Northeast Pacific Ocean 44◦38.65′ N, 127◦10′ W Sherr et al. (2001)
0.1–0.45 3H-Leucine method Bacteria – eastern equatorial Pacific Ocean 4.6◦ S, 105◦ W Cochlan (2001)
0.06–4.28 Specific DIP uptake rate Bacteria – Southeast Pacific 146.36◦ W, 72.49◦ W This study
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Fig. 1. Station names and locations of the BIOSOPE cruise transect in the South East Pacific
Ocean (October–December 2004). MAR 1 and MAR 3 (in the vicinity of Marquesas Islands),
HNLC (High Nutrient Low Chlorophyll area), GYRE (the central part of the Southeast Pacific
gyre), and UPW and UPX (the Chilean upwelling) are long stations (3–4 days) abbreviated
according their location; STB1-21 are short stations (1 day).
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Fig. 2. Example of vertical distribution of biological properties at station STB4 (127.97◦ W;
17.23◦ S): particulate phosphate (PartP), chlorophyll a (Chla), total phytoplankton counted by
flow cytometry: Prochlorococcus + Synechococcus + picoeucaryotes (phyto) and total cells
(heterotrophic bacteria + phytoplankton) counted by flow cytometry (Total cells).
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Fig. 3. Relations between Chlorophyll a (Chla) and particulate phosphate (PartP) at depth
corresponding to a range of PAR levels between 50% and 15%, for two size fractions: 0.2–
0.6µm and >0.6µm.
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Fig. 4. Relations between particulate carbon (POC) and phosphate (PartP) (A), between car-
bon (VDIC) and phosphate (VDIP) uptake rates (B) between chlorophyll a (Chla) and PartP (C)
and between Chla and POC (D). Data from 50 to 15% of PAR and between HNLC and STB18
stations. “slope” and “r” corresponds to the slope and the regression coefficient, respectively.
The dotted lines correspond to the 95 % confident range of the regression line (full line).
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Fig. 5. (A) Bacterial specific uptake rates calculated from HBP:HBB ratio and V sp
DIP in the fraction

<0.6µm. (B) Phytoplankton specific uptake rates calculates from V sp
DIC and V sp

DIP in the fraction
>0.6µm. Average specific uptake rates values on the photic zone. Autotrophic biomass cal-
culated from Chla using C:Chla conversion factors as describe in the Materials and Methods
section. Heterotrophic bacterial biomass calculated from bacterial cells abundance converted
to C equivalent using a conversion factor of 10 fgC cell−1.
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Fig. 6. Vertical and longitudinal distribution of the daily specific uptake of DIP (V sp
DIP) along the

BIOSOPE transect for four size classes: 0.2–0.6; 0.6–2; >0.6 and >2µm.
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